

Pulsed Wire Discharge (PWD) Experiments & Exploding Wire Method (EWM)

- first discharge of capacitors through metal wires by Edward Nairne 1774

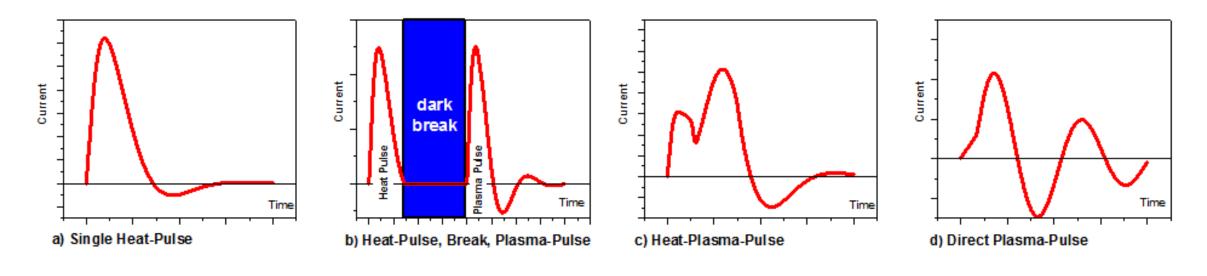
Practical Application:

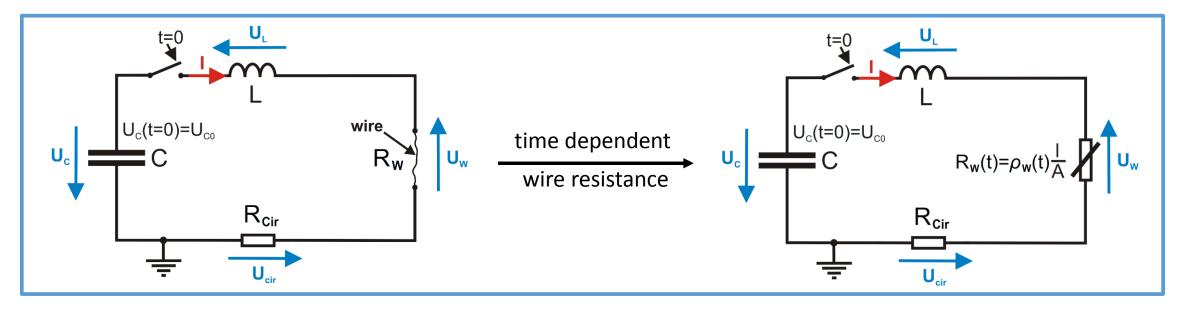
- high intensity light source
- production method for metal nanoparticles
- method for sheet metal forming (using shock waves)

Advantage: - energy may be adjusted very accurately

- no legal restraints
- new capacitor technology allows small setups

Current Pulse Shape of Exploding Wires





Goal of the Master Thesis:

Experimental investigations of exploding wires (alloy X5CrNi18-10)

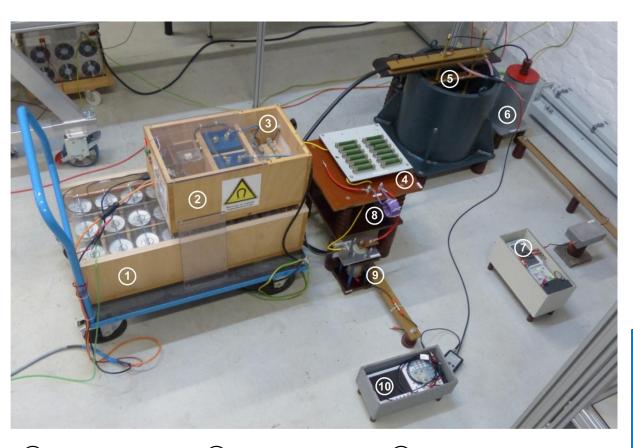
- Statistical proof of repeatability
- Capacitor voltage variations
- Wire diameter and wire length variations

Design of a simulation model

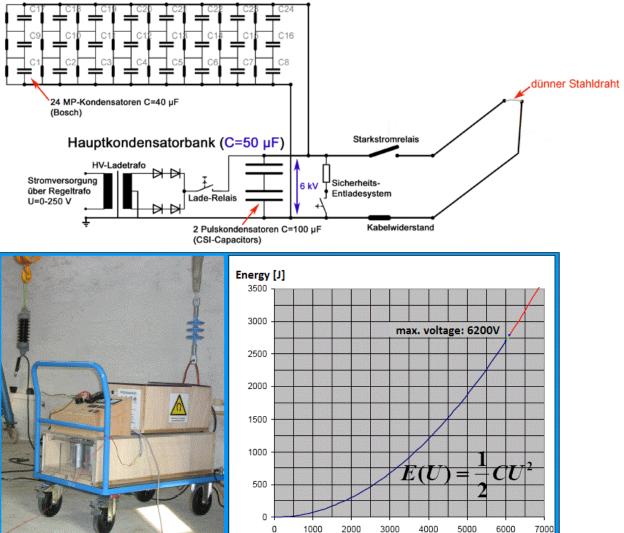
- Derivation of a coupled differential equation system
- Software implementation
- first simulation results

Experimental Setup

Erweiterungskondensatorbank (C=100 µF)

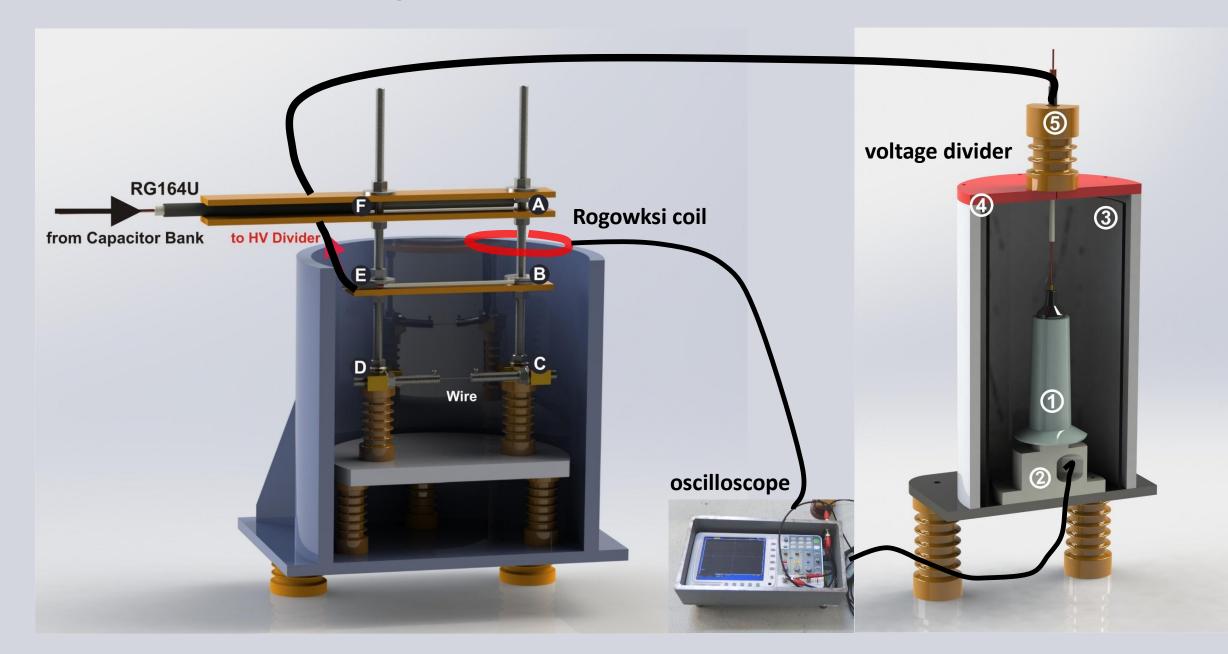


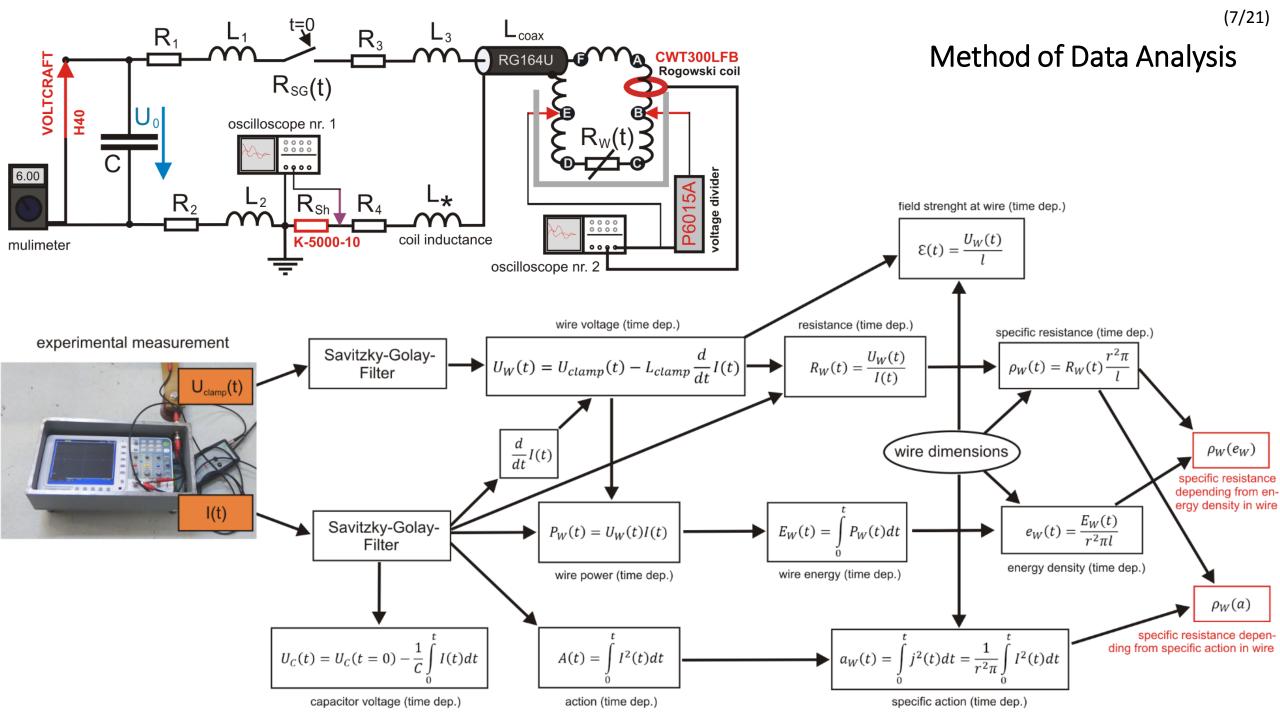
capacitor bank KB2,
 capacitor Bank KB1,
 high current switch,
 safety dischargesystem 1,
 discharge chamber with metal wire,
 high voltage divider,
 digital storage oscillosope nr. 2,
 variable inductance L*,
 coaxial shunt resistor,
 digital storage oscillosope nr. 1



Voltage [V]

Wire Voltage and Current Measurements

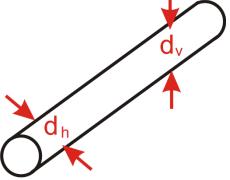


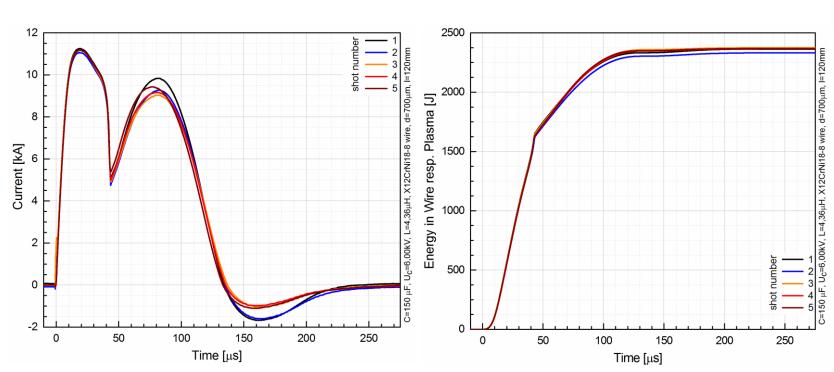


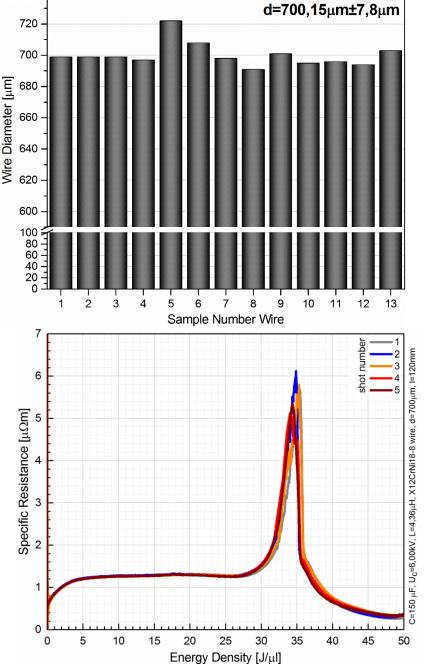
Experimental Investigations of Exploding Wires

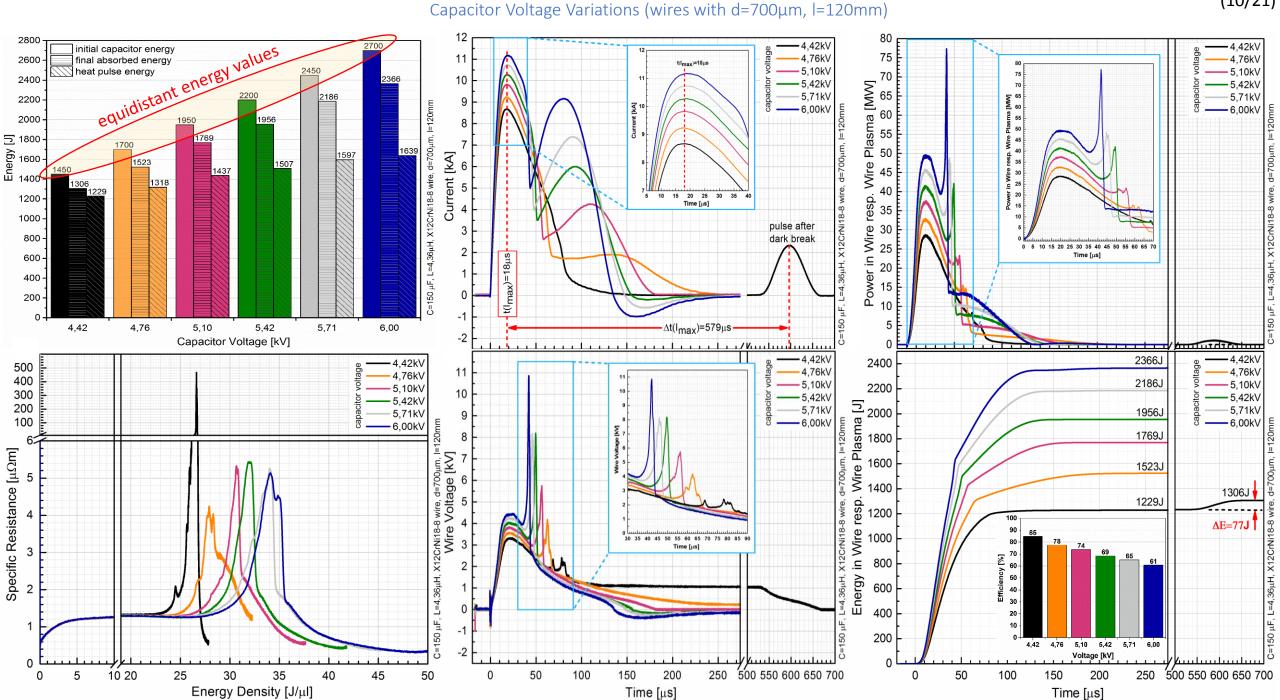
(9/21)

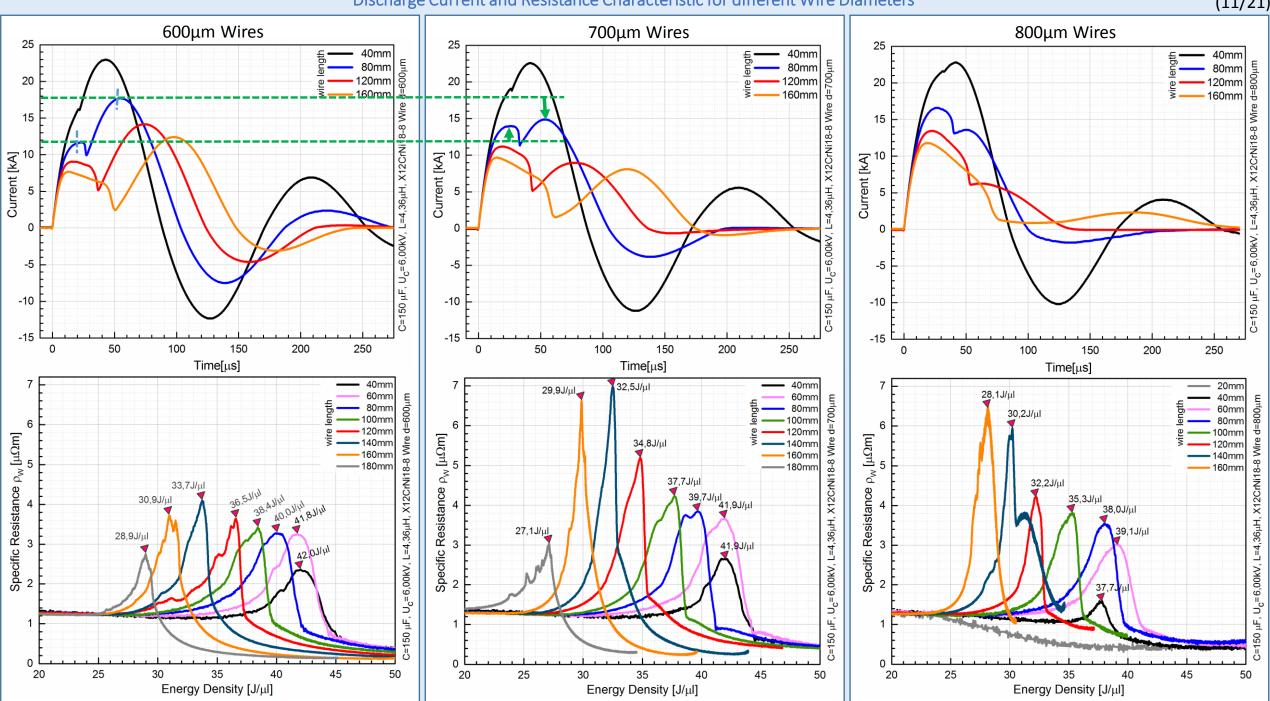
- wire with same length (120mm) and diameter (700μm) was used
- length variations where less then 1mm: dl<|±1mm|
- diameter variations where measured with a micrometer screw in horizontal (d_h) and vertical (d_v) direction





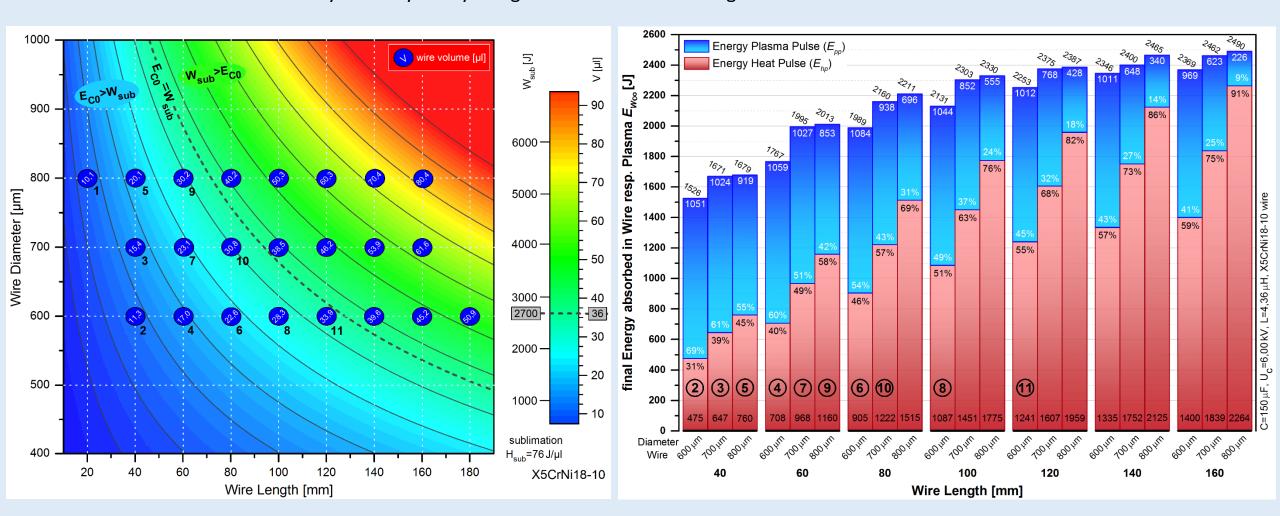




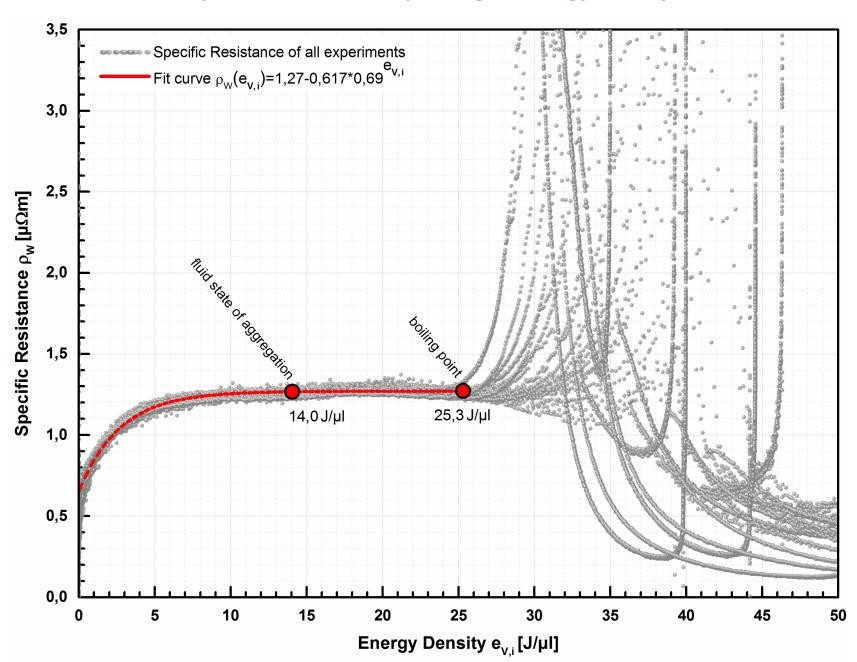


Energy absorbed in the Wire depending on Wire Dimensions

- Energy absorbed in wire may be less or larger than needed energy for total sublimation
- Influence of wire dimensions may be analysed by using wires with different length and diameter



Specific Resistance depending on Energy Density in Wire



Design of a Simulation Model

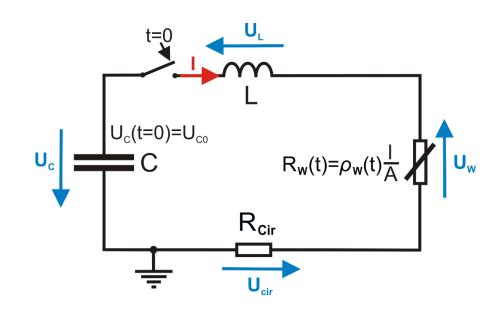
$$U_C(t) + U_L(t) + U_{circuit}(t) + U_w(t) = 0$$

$$\frac{d^{2}I(t) + O_{circuit}(t) + O_{w}(t) = 0}{d}$$

$$\frac{1}{C}I(t) + L\frac{d^2I(t)}{dt^2} + \frac{dI}{dt}\left(R_{circuit} + R_w(t)\right) + I(t)\frac{dR_w(t)}{dt} = 0$$

$$\Rightarrow \frac{d^2I(t)}{dt^2} = -\frac{1}{L} \left[\frac{1}{C}I(t) + \frac{dR_w(t)}{dt}I(t) + \left(R_{circuit} + R_w(t)\right) \frac{dI}{dt} \right]$$

$$R_w(t) = \rho(t) \frac{l}{S}$$
 \Rightarrow $\frac{dR_w(t)}{dt} = \frac{d\rho(t)}{dt} \frac{l}{S}$



Assume the specific resistance as a linear function of the (homogenous) energy density in the wire:

$$\rho(t) = \rho(e(t)) = \rho_0 + me(t)$$
 $\Rightarrow \frac{d\rho(t)}{dt} = m \frac{de(t)}{dt}$

$$\Rightarrow \frac{d^2I(t)}{dt^2} = -\frac{1}{L} \left[\frac{1}{C}I(t) + m \frac{de(t)}{dt} \frac{l}{S}I(t) + \left(R_{circuit} + (\rho_0 + me(t)) \frac{l}{S} \right) \frac{dI}{dt} \right]$$

power in the wire:

volume power density in the wire:

formula letters:

L = total circuit inductance [H] R_{W} = wire resistance [Ω]

 ρ = specific ristance wire $[\Omega m]$

 ρ_0 = initial specific resitance [Ω m]

 $m = slope factor [I \cdot \Omega m/J]$

e = energy density in wire [J/I]

= wire cross section [m²]

= wire length [m]

V = wire volume [m³]

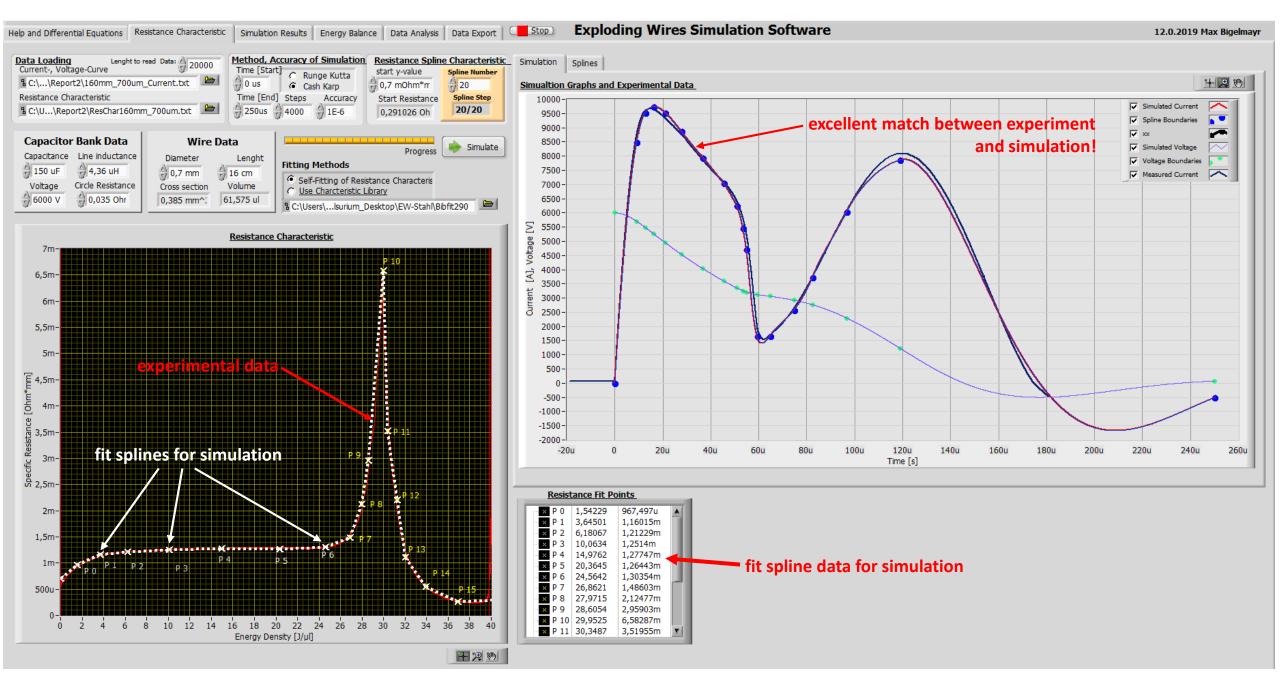
$$P_{w}(t) = I^{2}(t)\rho(t)\frac{l}{S} \Rightarrow \left[\frac{de(t)}{dt} = \frac{dP_{w}(t)}{dV} = I^{2}(t)\rho(t)\frac{l}{SV} = I^{2}(t)\frac{\rho(t)}{S^{2}} = \frac{1}{S^{2}}(\rho_{0} + me(t))I^{2}(t)\right]$$

capacitor energy

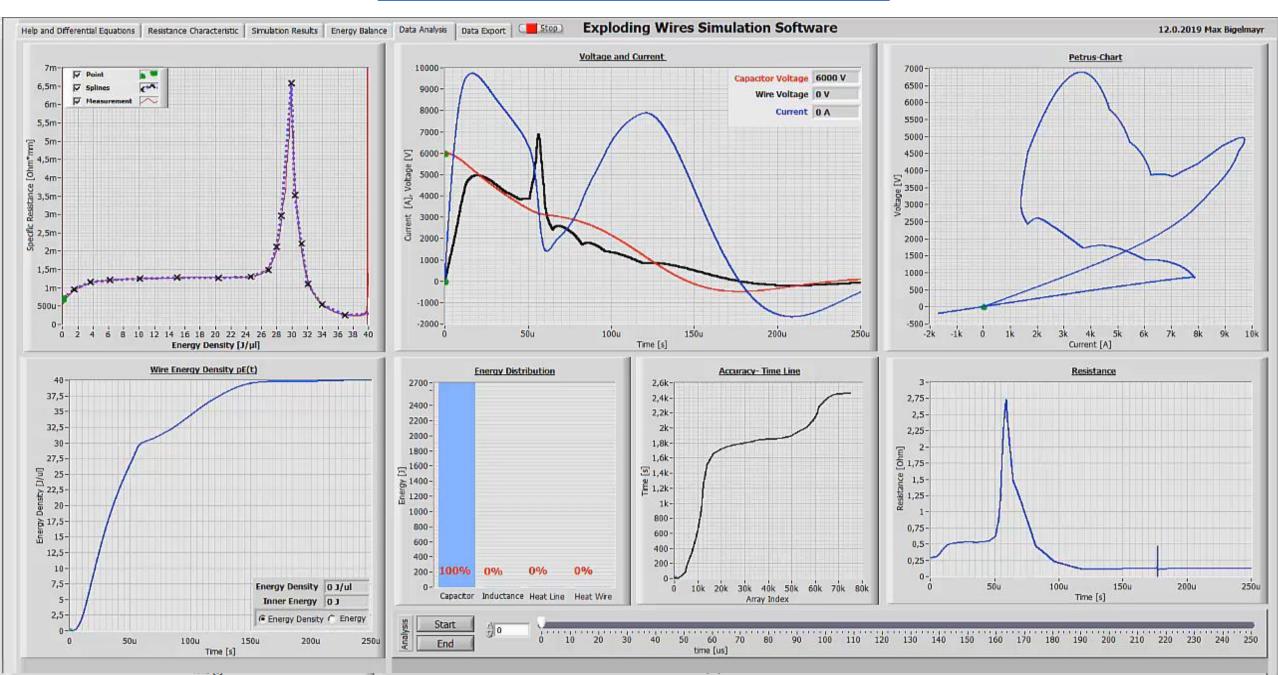
Table of Coupled Differential Equation System (ODE)

	Equation Nr.	Boundary Conditions		Differential Equation	Solved Fu	unction	$E_C(t) = \frac{1}{2}CU_C^2(t)$
Current	0	I(0) = 0		$\frac{dI(t)}{dt} = s(t)$	I(t)	t)	1
Current- Deviation	1	$\frac{dI(0)}{dt} = \frac{U_C(0)}{L}$	$\frac{ds(t)}{dt} = \frac{d^2I(t)}{dt^2}$	$= -\frac{1}{L} \left[\frac{1}{C} I(t) + \frac{ml}{S^3} \left(\rho_0 + me(t) \right) I^3(t) + \left(R_{circuit} \right) \right]$	$+\left(\rho_{0}+me(t)\right)\frac{l}{S}\left \frac{dI}{dt}\right \qquad s(t)=$	$\frac{dI(t)}{dt}$	$E_L(t) = \frac{1}{2}LI^2(t)$ inductive energy
Energy Density	2	e(0) = 0		$\frac{de(t)}{dt} = \frac{1}{S^2} \left(\rho_0 + me(t) \right) I^2(t)$	e(t	t)	$E_W(t) = e(t)r^2l$ wire energy
Capacitor Voltage	3	$U_C(0)=U_0$		$\frac{dU_C(t)}{dt} = -\frac{I(t)}{C}$	$U_c($		$\rho(e(t)) = \rho(e(t)) = \rho_0 + me(t)$ ific resistance
Action	4	A(0) = 0		$\frac{dA(t)}{dt} = I^2(t)$	A(t	t)	
Founded differential equations built a differential equation system, which may be solved numerically using Runge Kutta Algorithms. Check, whether method is correct: -> law of energy conservation $E_{total} = \frac{1}{2}CU_c^2(t) + \frac{1}{2}LI^2(t) + e(t)r^2\pi l + A(t)R_{circuit} = const.$							

Software Implementation







Summary and Conclusion

- excellent repeatability of experiments
- discharge behaviour strongly depends on initial capacitor voltage:

When enlarging the initial capacitor voltage, the absorbed energy in the wire increases, while the efficiency decreases.

- discharge behaviour strongly depends on wire dimensions:

When enlarging the wire diameter and length, the absorbed energy in the wire increases.

- resistance characteristic may be fitted by a fit function in the interval [0; 25.3J/μl]

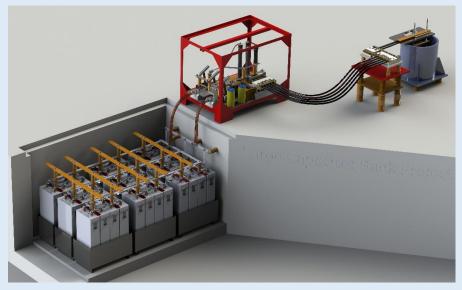
- derivation of a coupled differential equation system (ODE)
- sucessful software implementation
- sucessful simulation of exploding wire experiments with given resistance characteristics
- verification of simulation results by comparison with experimental data
- proof of simulation accuracy by law of energy conservation

Experimental investigations of exploding wires

Design of a simulation model

Future Experiments and Challenges

- Construction of a large capacitor bank system (40kJ@12kV) is in progress



Experimental investigations for generation of shockwaves under water

- finding of rules how to adjust the resistance characteristic
- use of more complex methods (magnetohydrodynamic simulations)

Improvement of the simulation model

Thanks for your attention!